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ABSTRACT

Context. Threads are the main constituents of prominences. They are dynamic structures that display oscillations, usually interpreted
as magnetohydrodynamic (MHD) waves. Moreover, instabilities such as the Kelvin-Helmholtz instability (KHI) have also been re-
ported in prominences. Both waves and instabilities may affect the thermodynamic state of the threads.
Aims. We investigate the triggering of turbulence in prominence threads caused by the nonlinear evolution of standing torsional Alfvén
waves. We study the heating in the partially ionized prominence plasma as well as possible observational signatures of this dynamics.
Methods. We modeled a prominence thread as a radially and longitudinally nonuniform cylindrical flux tube with a constant axial
magnetic field embedded in a much lighter and hotter coronal environment. We perturbed the flux tube with the longitudinally
fundamental mode of standing torsional Alfvén waves. We numerically solved the three-dimensional (3D) MHD equations to study
the temporal evolution in both ideal and dissipative scenarios. In addition, we performed forward modeling to calculate the synthetic
Hα imaging.
Results. The standing torsional Alfvén waves undergo phase-mixing owing to the radially nonuniform density. The phase-mixing
generates azimuthal shear flows, which eventually trigger the KHI and, subsequently, turbulence. When nonideal effects are included,
the obtained plasma heating is very localized in an annulus region at the thread boundary and does not increase the temperature in
the cool core. Instead, the average temperature in the thread decreases owing to the mixing of internal and external plasmas. In the
synthetic observations, first we observe periodic pulsations in the Hα intensity caused by the integration of the phase-mixing flows
along the line of sight. Later, fine strands that may be associated with the KHI vortices are seen in the synthetic Hα images.
Conclusions. Turbulence can be generated by standing torsional Alfvén waves in prominence threads after the triggering of the KHI,
although this mechanism is not enough to heat such structures. Both the phase-mixing stage and the turbulent stage of the simulated
dynamics could be discernible in high-resolution Hα observations.
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1. Introduction

Solar quiescent prominences are majestic structures of plasma
sustained against gravity thanks to magnetic fields, whose
strengths vary between 3 G and 60 G (see, e.g., Mackay et al.
2010; Gibson 2018). Such structures can be seen as bright struc-
tures in the solar limb or as dark structures on the solar disk,
in the case of which they are referred to as filaments that are
formed in filament channels. Projected on the photosphere, so-
lar prominences are near to a neutral line, which separates re-
gions of opposite magnetic polarity (Babcock & Babcock 1955;
Howard & Harvey 1964). Typically, solar prominences have
temperatures between 7500 K and 9000 K, gas pressure be-
tween 0.1 dyn/cm2 and 1 dyn/cm2, and number densities be-
tween 1010 cm−3 and 1011 cm−3 (Labrosse et al. 2010; Parenti
2014; Engvold 2015). Moreover, solar prominences are usually
suspended at heights that corresponds to the lower corona. In
such environment, temperatures are above 106 K, but the number
density is low, ∼ 108 cm−3 (see, e.g., Priest 2014). Consequently,
the plasma inside a prominence is cold and dense compared with
the coronal plasma. Importantly, the plasma in prominences is
only partially ionized (Labrosse et al. 2010).

High-cadence and high-resolution Hα observations showed
that prominences are formed by a myriad of substructures called

prominence threads (Lin et al. 2005, 2007, 2008). Prominence
threads are quite thin (∼ 0.21 Mm) and long (between ∼ 3.5
and 28 Mm) structures, which are believed to be embedded in
much longer magnetic tubes (see, e.g., Lin et al. 2005, 2007) of
lengths of the order of 100 Mm or more whose feet are rooted
in the lower atmosphere (Terradas et al. 2008b). Consequently,
prominence threads are usually modeled as thin magnetic flux
tubes with their ends fixed at the photosphere (Ballester & Priest
1989; Rempel et al. 1999; Soler et al. 2012; Adrover-González
et al. 2021; Melis et al. 2023).

Prominence threads are so dynamic that their continuous
presence in Hα observations is typically short. It ranges between
few minutes and 20 minutes (Lin et al. 2005). Magnetohydro-
dynamic (MHD) waves and oscillations play a predominant role
in the dynamics of threads (see Arregui et al. 2018). There are
many reports of transverse oscillations and propagating waves in
prominence threads with periods between 2 min and ∼ 15 min
(Lin et al. 2007, 2009; Ning et al. 2009; Orozco Suárez et al.
2014; Li et al. 2022). These oscillations are interpreted as kink
MHD waves (Terradas et al. 2008b; Lin et al. 2009; Soler et al.
2011; Okamoto et al. 2015; Li et al. 2022). The driver of these
waves is believed to be the convective motions at the photo-
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sphere, where the prominence magnetic field is anchored (Hillier
et al. 2013).

The present paper deals with torsional Alfvén waves, which
are transverse MHD waves that periodically twist the magnetic
field lines in a flux tube. It has been postulated that they might
play a role in the heating of the solar corona (Hollweg 1978;
Cranmer & van Ballegooijen 2005; Cargill & de Moortel 2011;
Mathioudakis et al. 2013; Soler et al. 2019; Van Doorsselaere
et al. 2020; Nakariakov & Kolotkov 2020) and in the accelera-
tion of the solar wind (Charbonneau & MacGregor 1995; Cran-
mer 2009; Matsumoto & Suzuki 2012; Shoda et al. 2018). In
straight flux tubes with a purely axial magnetic field, these waves
can maintain their pure magnetic nature despite inhomogeneities
(Goossens et al. 2011). Torsional Alfvén waves are nearly in-
compressible and are polarized perpendicularly to the magnetic
field lines producing periodic perturbations in the azimuthal
components of the magnetic field and the velocity. Recently,
Soler et al. (2019, 2021) found that torsional Alfvén waves can
transport large energy fluxes when they propagate from the pho-
tosphere to a coronal loop despite the filtering role of the chro-
mosphere. They found that the energy flux is channeled at the
frequencies that match the natural frequencies of the coronal
loop, generating global standing torsional oscillations. The gen-
eration of standing modes is possible because coronal loops can
act as Alfvén cavity resonators (Hollweg 1984b,a). However, the
energy distribution is not equally distributed among the different
eigenmodes, with the fundamental mode being the major con-
tributor.

To the best of our knowledge, there is no direct evidence of
torsional Alfvén waves in prominence threads, although there
have been direct reports of rotational motions caused by mag-
netic reconnection (Okamoto et al. 2016). Nonetheless, Jess
et al. (2009) detected torsional Alfvén waves at photospheric
bright points through spectral line nonthermal widening (see
Zaqarashvili 2003). Morton et al. (2013) reported the presence
of torsional Alfvén and kink waves in chromospheric swirls.
De Pontieu et al. (2012, 2014a) detected torsional motions in
spicules that could be compatible with torsional Alfvén waves.
This type of waves were also reported in the chromosphere
by Srivastava et al. (2017). More recently, Kohutova et al.
(2020) detected torsional Alfvén waves at coronal heights using
the Interface Region Imaging Spectrograph (IRIS; De Pontieu
et al. 2014b). Moreover, some oscillations generated during solar
flares can be interpreted as torsional Alfvén waves (Aschwanden
& Wang 2020) and torsional Alfvén waves have been reported in
the solar wind (Raghav & Kule 2018). Therefore, in view of their
ubiquity, it is likely that torsional Alfvén waves are also present
in prominences, although their direct detection remains elusive.

In a line-tied flux tube that is transversely nonuniform, ei-
ther in density or in magnetic field, there is an Alfvén fre-
quency continuum (see Halberstadt & Goedbloed 1993). Con-
sequently, Alfvén modes at different radial positions in the flux
tube become out of phase as time increases. This phenomenon
is the well-known process of phase-mixing (see, e.g., Heyvaerts
& Priest 1983; Nocera et al. 1984; De Moortel et al. 2000;
Smith et al. 2007; Prokopyszyn et al. 2019; Díaz-Suárez & Soler
2021a). Phase-mixing is a linear process that generates shear
flows perpendicularly to the magnetic field lines and transports
Alfvén wave energy from large to small perpendicular scales.
The rhythm at which the energy is transported depends on the
gradient of the Alfvén frequency (see Mann et al. 1995). Eventu-
ally, the phase-mixing shear flows trigger the Kelvin-Helmholtz
instability (KHI) as Heyvaerts & Priest (1983) and Browning
& Priest (1984) analytically predicted. This result is numeri-

cally confirmed in Guo et al. (2019) and Díaz-Suárez & Soler
(2021b). Although with some important differences, an equiv-
alent dynamics also appears in simulations of kink waves (see,
e.g., Terradas et al. 2008a, 2018; Antolin et al. 2014; Magyar
& Van Doorsselaere 2016; Howson et al. 2017b,a; Karampelas
et al. 2017; Karampelas & Van Doorsselaere 2018; Karampelas
et al. 2019; Guo et al. 2019; Pascoe et al. 2020; Shi et al. 2021;
Magyar et al. 2022). The KHI generates vortices that nonlin-
early break into smaller and smaller vortices leading naturally
to turbulence. Although not related to the Alfvén waves, there
are observations of the KHI in coronal mass ejections (Foullon
et al. 2011) and in prominences (Berger et al. 2017; Hillier &
Polito 2018; Yang et al. 2018). In the latter case, turbulence is
also reported (see Leonardis et al. 2012).

In the present work we study the nonlinear evolution of tor-
sional Alfvén waves in quiescent prominence threads. The pur-
pose of this investigation is twofold. On the one hand, we aim to
the explore the process of turbulence generation mediated by tor-
sional waves. Such a mechanism has been studied before in the
case of coronal loops (Díaz-Suárez & Soler 2021b, 2022) but,
to the best of our knowledge, not in prominence threads. Un-
like the fully ionized coronal loops, prominence threads are only
partially ionized. In the partially ionized prominence plasma,
ambipolar diffusion and, to a lesser extent, Ohmic diffusion,
are important dissipation mechanisms (Khomenko et al. 2014b;
Ballester et al. 2018; Melis et al. 2021). Consequently, ambipo-
lar and Ohmic diffusion are included here as nonideal effects
that can dissipate Alfvén waves and the associated turbulence,
and so potentially heat prominence threads. On the other hand,
we aim to explore what kind of signatures the dynamics of tor-
sional oscillations may leave in synthetic Hα observations, so
that observers may look for those signatures in real observations
in order to detect the still elusive torsional waves in prominences.

This paper is organized as follows. In Sect. 2, we describe
the numerical setup. The results from both ideal MHD and non-
ideal MHD simulations are given in Sect. 3. The synthetic Hα
observations are presented and analyzed in Sect. 4. Finally, we
discuss the conclusions of this work in Sect. 5.

2. Numerical setup

2.1. Prominence thread model

We represent a prominence thread as a straight magnetic flux
tube of length, L, and radius, R, permeated by a uniform lon-
gitudinal magnetic field, namely, B = B0ẑ, where B0 = 5.2 G
throughout. We consider R = 1 Mm and L = 50R, so that
L = 50 Mm. The value of L used here is shorter than that usually
reported from observations by a factor of 2, approximately. Ter-
radas et al. (2008b) inferred the minimum length of the magnetic
tube of an active-region prominence thread reported by Okamoto
et al. (2007) as L ≈ 104.8 Mm. The reason for considering a
shorter tube is to speed up the computations, since the periods of
the standing waves are proportional to L.

The cool and dense plasma of the prominence thread is sur-
rounded by the hot and light coronal plasma. For simplicity, we
ignore gravity and specify the equilibrium density, ρ0, that varies
in both the radial, r, and longitudinal, z, directions namely,

ρ0(r, z) =


ρi(z), if r ≤ R − l

2 ,
ρtr(r, z), if R − l

2 < r < R + l
2 ,

ρe, if r ≥ R + l
2 ,

(1)

where ρi(z) is the internal density that varies along the tube, ρe
is the external coronal density assumed uniform, and ρtr(r, z) is
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the density in a transversely nonuniform layer of thickness, l,
that connects the internal and external plasmas. In this work we
used l/R = 0.6. After Soler et al. (2015), we adopt a Lorentzian
profile along the flux tube for the internal density, namely,

ρi(z) =
ρi,0

1 + 4 (χ − 1) z2/L2 . (2)

In Eq. (2), ρi,0 is the density at the centre of the flux tube, z = 0,
and χ ≡ ρi,0/ρi(z = L/2) is the ratio of the central density to
the footpoint density. The larger the value of χ, the more con-
centrated the distribution of the density is around the center of
the flux tube (see, e.g., Fig. 2 of Martínez-Gómez et al. 2022).
In turn, the density in the transversely nonuniform layer is pre-
scribed as

ρtr(r, z) =
ρi (z)

2

{[
1 +

ρe

ρi (z)

]
−

[
1 −

ρe

ρi (z)

]
sin

[
π

l
(r − R)

]}
. (3)

In our background model we used ρe = 5.02 · 10−13 kg/m3,
ρi,0 = 100ρe = 5.02 · 10−11 kg/m3, and χ = 100. Figure 1
shows a sketch of the prominence thread model and Fig. 2 shows
one-dimensional longitudinal and radial cuts of the equilibrium
density profile.

The background gas pressure in the model, p0, is uniform.
In the realistic corona and prominences, the plasma is mag-
netically dominated, so that the plasma β = 2p0µ0/B2

0 ≪ 1,
where µ0 is the vacuum magnetic permeability. In our model,
we chose the value of p0 so that β = 0.048. The equilibrium
Alfvén speed, vA,0(r, z) = B0/

√
µ0ρ0(r, z), and the equilibrium

sound speed, cs,0(r, z) =
√
γp0/ρ0(r, z), where γ is the adiabatic

constant, are displayed in Fig. 3 in longitudinal and radial cuts
to the thread. We can see a sharp variation in vA,0 and cs,0 across
the prominence thread owing to the large density contrast be-
tween the corona and the core of the thread. The variation of
both speeds is smoother in the longitudinal direction. The exter-
nal value of the Alfvén speed is our reference velocity, namely
vA,e = 654.7 km/s.

2.2. Numerical code

We performed time-dependent numerical simulations with the
PLUTO code (Mignone et al. 2007), which solves the 3D resis-
tive MHD equations with a finite-volume, shock-capturing spa-
tial discretization. The equations solved by PLUTO are as fol-
lows:

∂ρ

∂t
= −∇ · (ρv) , (4)

ρ
Dv
Dt

= −∇p +
1
µ0

(∇ × B) × B, (5)

∂B
∂t

= ∇ × (v × B) − µ0∇ × (η̂ · j) , (6)

Dp
Dt

=
γp
ρ

Dρ
Dt
+ (γ − 1) µ0 (η̂ · j) · j. (7)

In Eqs. (4-7), D
Dt ≡

∂
∂t + v · ∇ denotes the total derivative, ρ is the

mass density, v is the velocity, B is the magnetic field, p is the gas
pressure, and j = (∇ × B) /µ0 is the current density. Moreover, η̂
is the resistivity tensor, which is defined in PLUTO as a diagonal
tensor in the Cartesian coordinate frame, namely

η̂ =

 ηx 0 0
0 ηy 0
0 0 ηz

 , (8)

with ηx, ηy, and ηz the x-, y-, and z-components of resistivity,
respectively.

The PLUTO code solves Eqs. (4-7) in Cartesian coordinates.
We used a uniform grid of 800x800x250 points. We performed
the simulations in a computational box where x/R ∈ [−3, 3],
y/R ∈ [−3, 3], and z/R ∈ [−25, 25]. Therefore, the spatial res-
olution in x− and y−directions is 7.5 km while in z−direction
is 200 km. We used a fifth-order weighted essentially non-
oscillatory (WENO) algorithm for spatial reconstruction (Borges
et al. 2008) and a Roe-Riemann (Roe 1981) solver to compute
the numerical fluxes. Moreover, we used the hyperbolic diver-
gence cleaning technique (Dedner et al. 2002) to maintain the
solenoidal constraint on the magnetic field, which couples the
divergence of the magnetic field and Eq. (6) to generalized La-
grange multipliers. Because the magnetic field is current-free
and force-free, we used the background-field-splitting technique
(Powell 1994), which only evolves the magnetic field perturba-
tions. We perform both ideal and resistive MHD simulations. In
the ideal simulations (η̂ = 0), an explicit total variation dimin-
ishing third-order Runge-Kutta algorithm is used for the tempo-
ral evolution. In the resistive simulations (η̂ , 0), the explicit
time step becomes too small, as it depends quadratically on the
grid size and inversely on the diffusion coefficient. In this case,
we use the super-time stepping technique (STS, Alexiades et al.
1996) implemented in PLUTO. STS allows us to save compu-
tational time by accelerating the explicit temporal scheme and
requiring stabilization only at the advective time super-steps, but
not in the various substeps in which each super-step is divided
into.

Although the temperature, T , is not a variable directly
evolved by the PLUTO code, we are interested in studying its
evolution over the span of the simulations. To this end, we imple-
mented in PLUTO the computation of the temperature through
an iterative method using the local values of density and gas
pressure, so that T is a secondary, user-defined variable of the
code. In addition, the prominence plasma is partially ionized
(see, e.g., Parenti 2014). Therefore, we also need to determine
the plasma ionization fraction, ξi, defined as the ratio of the ion
density to the total density. At every time step and at each grid
point, we solved the equation of state for a partially ionized hy-
drogen plasma, namely,

p = (1 + ξi) ρR̃T, (9)

where R̃ is the ideal gas constant. In the prominence plasma, ξi is
a function of the local pressure and temperature. We used the tab-
ulated values of ξi given in Table 1 of Heinzel et al. (2015) for a
height of 10 Mm over the photosphere. Equation (9) is coupled
with the values of the table. Starting with the assumption that
ξi = 1 (full ionization), Eq. (9), together with the data in Table 1
of Heinzel et al. (2015), is solved iteratively until the computed
values of T and ξi converge. Since the table only contains limited
ranges of pressure and temperature, the following conditions are
applied in the process when the values are outside those of the
table. Using the results from Gouttebroze & Labrosse (2009),
for temperatures higher than 2 · 104 K, we assumed full ioniza-
tion. If the pressure is larger or smaller than the maximum or
minimum pressure value from the table, or if the temperature is
smaller than 6000 K, we saturated to the closest value in the ta-
ble. However, we note that the condition for the pressure was
never actually applied in the simulations included here, as the
minimum and maximum pressure values found during the sim-
ulations fell within the range of the table in all cases. Particu-
larly, the pressure was found to range between 0.046 and 0.057
dyn cm−2, approximately. Typically, prominences are composed
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Fig. 1. Sketch of the prominence thread model. The solar photosphere is represented by the two gray planes at both ends of the magnetic flux tube.

Fig. 2. Equilibrium density profile. Top panel: Longitudinal dependence
at r = 0. Bottom panel: Transverse dependence at y = z = 0. We used
l/R = 0.6, ρi,0 = 100ρe, L/R = 50, and χ = 100. The density profiles
are normalized with respect to the external, coronal density.

of ∼ 10% helium. However, for simplicity, we assumed a plasma
composed solely of hydrogen.

We used an initial perturbation with the aim of exciting the
longitudinally fundamental mode of standing torsional Alfvén
waves. As in Díaz-Suárez & Soler (2021b), we perturbed the
azimuthal component of velocity, as follows:

v (t = 0) = v0A(r) cos
(
π

L
z
)
φ̂, (10)

where v0 is the maximum velocity amplitude and A(r) con-
tains the radial dependence (see details in Díaz-Suárez & Soler
2021b). A radial cut of the normalized azimuthal component of
velocity at the centre of the tube can be seen in top panel of Fig. 4
of Díaz-Suárez & Soler (2022) (see the red dot-dashed line). We
set v0 = 0.01vA,e, so that v0 = 6.55 km/s, which is of the order
of the velocity amplitude in small-amplitude prominence oscil-
lations (Lin et al. 2009; Arregui et al. 2018). The longitudinal

Fig. 3. Same as Fig. 2, but for the sound and Alfvén speeds in the equi-
librium. In both panels, the blue solid line corresponds to the Alfvén
speed and the red dashed line corresponds to the sound speed. Both
speeds are normalized with respect to the external Alfvén speed, vA,e.

dependence as cos
(
π
L z

)
, set in the initial condition of Eq. (10),

excites the fundamental mode as well as other longitudinal har-
monics with even symmetry with respect to z = 0. These ad-
ditional harmonics will be present because, in a longitudinally
nonuniform tube, the spatial dependence of the eigenmodes de-
viates from the canonical harmonic dependence (see, e.g., An-
dries et al. 2005; Soler et al. 2015). However, in the simulations
the evolution is largely dominated by the dynamics of the longi-
tudinally fundamental mode.

Regarding the boundary conditions, we used outflow con-
ditions, that is, zero gradient for all the variables in all lateral
boundaries. On the top and bottom boundaries, z = ±L/2, we
imposed line-tying conditions so as to mimic the anchoring of
the field lines in the solar photosphere. To perform this task,
we fixed the three components of velocity to zero while the z-
component of the magnetic field is fixed to the equilibrium value.
The remaining variables, namely density, pressure, and the x−
and y−components of the magnetic field, are set to be outflow.
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2.3. Implementing Ohmic and ambipolar diffusion

The temperature of the coronal plasma is typically of the order
of 106 K (see, e.g., Priest 2014), so the plasma is fully ionized.
The temperature in prominences is much smaller, around 104 K
or lower (see, e.g., Tandberg-Hanssen 1995; Parenti 2014). As
a consequence of that, the prominence plasma is only partially
ionized (see, e.g., Labrosse et al. 2010). In a partially ionized
plasma, ambipolar diffusion, caused by ion-neutral collisions, is
an important dissipation mechanism (see, e.g., Osterbrock 1961;
Pandey et al. 2008; Soler et al. 2009; Khomenko & Collados
2012; Ballester et al. 2018; Nóbrega-Siverio et al. 2020). Simi-
larly, the Ohmic diffusion, caused by the collisions of electrons
with other species, is heavily enhanced by the presence of neu-
trals. Both Ohmic and ambipolar diffusion can dissipate Alfvén
waves in the partially ionized prominence medium (see, e.g.,
Soler et al. 2009).

In the presence of Ohmic and ambipolar diffusion, the resis-
tive term η̂ · j in Eqs. (6) and (7) can be decomposed as (see, e.g.,
Bittencourt 2004),

η̂ · j = (ηO + ηA|B|2)j − ηA (B · j) B, (11)

where ηO and ηA are the Ohmic and ambipolar diffusion coef-
ficients, respectively. The first term on the right-hand side of
Eq. (11) only includes diagonal elements in the resistivity tensor,
η̂. This term depends on both ηO and ηA. Conversely, the second
term introduces both diagonal and off-diagonal elements and de-
pends on ηA alone. In the PLUTO code, the resistivity tensor is
assumed to be diagonal (Eq. (8)). The off-diagonal terms associ-
ated with the second term on the right-hand side of Eq. (11) can-
not be included in the code. Therefore, the implementation of the
ambipolar diffusion in PLUTO can only be done in an approxi-
mate manner (see, e.g., Khomenko & Collados 2012; Nóbrega-
Siverio et al. 2020; Moreno-Insertis et al. 2022, for general im-
plementations of the ambipolar diffusion). To circumvent this
limitation of the code, we exploited the fact that, in the simula-
tions, the background magnetic field along the tube axis is strong
compared with the perturbations across the background mag-
netic field (see details in the Appendix A). Hence, in Eq. (11)
we write

B = B0ẑ + B1, (12)

where B1 represents the perturbations over the background axial
field and verify that |B1| ≪ B0. Consequently, we approximate
|B|2 = B2

0 and (B · j) B ≈ B2
0j · ẑ. Under this approximation, η̂

becomes a diagonal tensor as:

η̂ ≈

 ηO + B2
0ηA 0 0

0 ηO + B2
0ηA 0

0 0 ηO

 =
 ηC 0 0

0 ηC 0
0 0 ηO

 ,
(13)

where ηC = ηO + B2
0ηA is the Cowling’s diffusion coefficient,

which combines both the ambipolar and Ohmic diffusion coeffi-
cients. The Cowling diffusion accounts for the total magnetic dif-
fusion across the magnetic field. We implemented in the PLUTO
code this approximate resistivity tensor. Some tests about the nu-
merical implementation can be checked in the Appendix B.

The Ohmic, ηO, and ambipolar, ηA, diffusion coefficients
depend upon the plasma local properties and are calculated in
PLUTO in the whole domain at each time step. The expressions

to compute both coefficients are (see, e.g., Ballester et al. 2018):

ηO =
αe

µ0e2n2
e
, (14)

ηA =
ξ2n
µ0αn

, (15)

where ξn = 1 − ξi is the neutral fraction, e is the electron charge,
and ne is the electron number density. Moreover, αe and αn are
the total friction coefficients for electrons and neutrals, respec-
tively, which account for the collisions that these species have
with all other particles. In our particular case, the species can be
electrons, protons, or hydrogen atoms because we used a pure
hydrogen plasma. The total friction coefficient of a species β can
be obtained as the sum of the individual friction coefficients be-
tween different species, namely,

αβ =
∑
β,β′

αββ′ . (16)

Following Braginskii (1965) and Spitzer (1968), the friction co-
efficient between two different charged species is:

αββ′ =
nβnβ′e4 lnΛββ′

6
√

2ϵ20 mββ′
(
πkBT/mββ′

)3/2 , (17)

where nβ (nβ′ ) is the number density of the species β (β′), mββ′ is
the reduced mass defined as mβmβ′/(mβ + mβ′ ), kB is the Boltz-
mann’s constant, and ϵ0 is the vacuum electrical permittivity.
Moreover, lnΛββ′ is the Coulomb logarithm, which is included
to consider the ineffectiveness of the interactions between the
charged species after some distance. According to Spitzer (1962;
see also Vranjes & Krstic 2013), the Coulomb logarithm is:

lnΛββ′ = ln
[
24π (ϵ0kBT )3/2

e3 √nβ + nβ′

]
. (18)

On the other hand, the friction coefficient between a charged and
a neutral species is:

αβn = nβnn

√
8kBT
πmβn

σβn, (19)

where the sub-index n denotes a neutral and σβn is the collisional
cross-section, which we obtained from Vranjes & Krstic (2013).
The values of the collisional cross-section are weakly dependent
on the temperature (see Vranjes & Krstic 2013). However, for
typical prominence temperatures considered here, this result can
be safely ignored. Thus, we used constant values of the colli-
sional cross-sections for simplicity.

We studied the values of the temperature, the ionization frac-
tion, and the Ohmic, ambipolar, and Cowling diffusion coeffi-
cients in a longitudinal cut at the tube axis, r = 0, corresponding
to the background model. The results are shown in Fig. 4. We
found the minimum of temperature, T ≈ 8000 K, and the mini-
mum of the ionization ratio, ξi ≈ 0.547, at the core of the promi-
nence thread. The ambipolar diffusion is dominant for typical
conditions of prominence threads, so it is the main contributor
to the Cowling diffusion (see Melis et al. 2021, 2023). A simi-
lar situation occurs in the high chromosphere (Khomenko et al.
2014a). Magnetic diffusion is highly anisotropic in the partially
ionized prominence plasma, being much more efficient across
than along the magnetic field direction.
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Fig. 4. Longitudinal cuts along the tube axis, r = 0, of the a) Ohmic diffusion coefficient, b) ambipolar diffusion coefficient, c) Cowling diffusion
coefficient, d) temperature, and e) ionization fraction in the equilibrium.

3. Numerical simulations

We aim to study the nonlinear evolution of standing torsional
oscillations in the prominence thread. Unless otherwise stated,
all quantities are specified in normalized units. Density, velocity,
and length are normalized with respect to the external density, ρe,
external Alfvén speed, vA,e, and the thread radius, R, respectively,
whose values have been given before. In turn, the normalized
time, t̄, is expressed in units of the Alfvén travel time, namely,
tA = R/vA,e ≈ 1.53 s.

Before analyzing the result of the simulations, it is useful to
calculate the expected period of the standing oscillations. Fol-
lowing the analytical treatment in Díaz-Suárez & Soler (2021b),
to calculate the period of the longitudinally fundamental tor-
sional Alfvén mode we solved the 1D wave equation for the
linear azimuthal component of velocity, v′φ, in the equilibrium,
namely,

∂2v′φ

∂t2 = v
2
A,0(r, z)

∂2v′φ

∂z2 . (20)

Equation (20) is transformed into an eigenvalue problem by ex-
pressing the temporal dependence as exp (iωAt) where ωA is the
Alfvén eigenfrequency. Thus,

ω2
Av
′
φ = −v

2
A,0(r, z)

∂2v′φ

∂z2 , (21)

with the boundary conditions of v′φ(r, z = ±L/2) = 0. Because of
the spatial dependence of vA,0, we solved the eigenvalue problem
numerically with Wolfram Mathematica for the longitudinally
fundamental mode. The period of the oscillations is P = 2π/ωA.
The period varies with the radial position because of the radial
dependence of vA,0. The period in the uniform core of the thread
is ∼ 535 tA (13.62 min in physical time), while that in the corona
is 100 tA (2.54 min in physical time). This means that the Alfvén
modes in the external plasma would have completed more than
5 periods of oscillation before the internal mode had completed
a single period. Of course, the period continuously varies in the
transition between the internal and external plasmas. The result
of this continuum of periods will be a strong phase mixing in the
radial direction.

3.1. Ideal MHD dynamics

First, we studied the dynamics of the oscillations in the absence
of resistivity, so that we set ηO = ηA = 0 and performed an
ideal MHD simulation. After the initial excitation, the flux tube
is let to evolve. To help us understand better the dynamics of
the simulation, besides studying the evolution of the density and
the temperature, we also studied the vorticity, ω = ∇ × v, and
the current density, j = µ−1

0 ∇ × B because these quantities are
extremely sensitive to spatial gradients in the velocity field and
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in the magnetic field, respectively. They can help us visualize
the development of turbulence. The results of this ideal simula-
tion are displayed in Figs. 5 and 6 in two different planes of the
complete 3D box.

On the one hand, Fig. 5 shows cross-sectional cuts of the
density (top left panel), the temperature (top right panel), the
current density squared (bottom left panel), and the vorticity
squared (bottom right panel). We used logarithmic scale to op-
timize the visualization for each variable except for the density.
The cross-sectional cuts for density, vorticity squared, and tem-
perature are done at the tube center, z = 0, while that for current
density squared is done at z = R, which is a plane slightly dis-
placed from the center. The reason for showing the current den-
sity in a different plane is that this variable has a node at the tube
center. Since the relevant dynamics occurs in the core and in the
transition layer of the prominence thread, we only showed a sub-
domain of the computational box where x, y ∈ [−1.5R, 1.5R]. We
checked that nothing of interest happens outside this subdomain.
The complete temporal evolution can be seen in the accompany-
ing animation, while the still image in Fig. 5 displays the results
at the final simulation time, t = 820, corresponding to ∼ 21 min
in physical time.

On the other hand, Fig. 6 shows the same variables as in
Fig. 5, but in a longitudinal plane to the tube corresponding to
y = 0. As before, the results are only displayed in a subdomain
of the whole box where x ∈ [−1.8R, 1.8R], while the z−direction
is fully shown. In Fig. 6 we used a larger scale for the current
density than in Fig. 5 to avoid early saturation and ease the vi-
sualization. Again, the complete temporal evolution can be seen
in the accompanying animation, while the still image in Fig. 6
displays the results at the final simulation time.

As expected, we found that the torsional Alfvén modes os-
cillate with different frequencies in adjacent radial positions ow-
ing to the transversely nonuniform density. The oscillations be-
come out of phase as time increases. Such a phenomenon is
called phase mixing and is of linear nature (see, e.g., Heyvaerts
& Priest 1983; Nocera et al. 1984; De Moortel et al. 2000; Smith
et al. 2007; Prokopyszyn et al. 2019; Ebrahimi et al. 2020; Van
Damme et al. 2020; Ebrahimi & Soler 2022). Due to phase mix-
ing, the azimuthal component of velocity (not shown here) al-
ternates between negative and positive values in adjacent radial
positions. Such alternation generates azimuthal shear flows (see,
e.g., Fig. 2 in Heyvaerts & Priest 1983 or Fig. 6 in Díaz-Suárez
& Soler 2021b). These shear flows manifest themselves in the
cross-sectional cuts of the vorticity and the current density as
concentric rings, which are better seen in the animation of Fig.
5). Similar ring-shaped structures can also be found in simula-
tions of torsional oscillations of coronal loops (Díaz-Suárez &
Soler 2021b, 2022). These early structures in vorticity and cur-
rent density are also equivalent to those seen in simulations of
kink oscillations of coronal loops (Antolin et al. 2014; Howson
et al. 2017a; Antolin & Van Doorsselaere 2019). However, the
spatial distribution in the case of kink oscillations is not in the
form of concentric rings owing to the different azimuthal sym-
metry that torsional and kink modes have. Besides, resonant ab-
sorption does not happen in our simulation, which is a concurrent
process to phase-mixing in simulations of kink modes.

The annular structures in vorticity and current density caused
by phase mixing are seen in the simulations before any appre-
ciable disturbance in the density or the temperature. At the early
stages of the evolution, we can see some weak perturbations in
density in the form of periodic accretion (voiding) of plasma to
(from) the center of the thread, which is better appreciated in the
animation of Fig. 6. These density variations are not related to

phase mixing but are caused by the ponderomotive force, a non-
linear effect that couples Alfvén and slow magnetosonic modes
(Hollweg 1971; Rankin et al. 1994; Tikhonchuk et al. 1995; Ter-
radas & Ofman 2004).

As phase mixing develops, the azimuthal shear flows gradu-
ally intensify and eventually trigger the KHI (see, e.g., Heyvaerts
& Priest 1983; Browning & Priest 1984; Soler et al. 2010; Za-
qarashvili et al. 2015; Barbulescu et al. 2019). As these flows are
perpendicular to the background magnetic field lines, the mag-
netic tension cannot avoid the triggering of KHI (see, e.g., Chan-
drasekhar 1961). We can visually identify in Fig. 5 that the first
KHI-associated deformations of temperature and density occur
at τvis ≈ 280 (∼ 7 min in physical time), which corresponds to
less than three periods of the external torsional Alfvén mode and
about half a period of the internal mode. However, the examina-
tion of the form of the vorticity for that time already reveals the
existence of significant deformations in the boundary between
the inhomogenous layer and the external medium. This makes
us wonder whether the visual estimation of the KHI onset time
from the density evolution might overestimate the actual onset
time. Indeed, the initial growth of KHI perturbations can be ap-
preciated in the vorticity at an earlier time than in the density and
the temperature. A more detailed analysis of onset time is given
in Sect. 3.1.1.

Once the KHI is triggered, large eddies are formed and
rapidly grow inside the nonuniform boundary layer of the tube.
The KHI evolves nonlinearly, breaking the initially large eddies
into small eddies leading naturally to turbulence. Turbulence
mixes the hot and light coronal plasma with the cold and dense
prominence thread plasma. Initially, turbulence occurs locally in
the nonuniform boundary layer alone, but as time increases, part
of the core and the external media are also affected. In the tem-
perature evolution, we can see intrusions of hot plasma towards
the cool core of the thread and, in density, an apparent breakup of
the prominence material. Importantly, neither the KHI nor turbu-
lence are seen in the longitudinal direction (see Fig. 6), meaning
that the turbulence only develops perpendicularly to the mag-
netic field lines. In the case of torsional oscillations of coronal
loops, this matter has been investigated in Díaz-Suárez & Soler
(2021b, 2022).

3.1.1. Estimating the Kelvin-Helmholtz instability onset time

To estimate quantitatively the KHI onset time, we used the dis-
crete Fourier transform in the azimuthal direction of the az-
imuthal and radial velocity components. The KHI is expected
to excite high azimuthal modes. This technique was first used
by Terradas et al. (2018) and later by Antolin & Van Doorsse-
laere (2019) and Díaz-Suárez & Soler (2021b, 2022) in coro-
nal loops. Particularly, we investigated the azimuthal and radial
components of velocity in a cross sectional cut at the tube cen-
ter, z = 0, and in the boundary between the external medium and
the inhomogeneous density layer, that is, for r = 1.3R. This ra-
dial position is chosen because we visually identify the growth
of the first KHI eddies at that location. We applied the discrete
Fourier transform to both velocity components using the fast
Fourier transform (FFT) algorithm with the Scipy module (Vir-
tanen et al. 2020). Following the same notation as in Terradas
et al. (2018), the discrete Fourier transform can be set as:

G(p) =
N−1∑
k=0

g(k) exp
(
−

2πipk
N

)
. (22)

Article number, page 7 of 20



A&A proofs: manuscript no. 48216corr

-1.5

0.0

1.5
y/

R
t = 820

/ e(t = 0)

1

20

40

60

80

100 log10[T/Ti(t = 0)]

0.000

0.475

0.950

1.425

1.900

-1.5 0.0 1.5
x/R

-1.5

0.0

1.5

y/
R

log10(j2)

6.0

4.5

3.0

1.5

0.0

-1.5 0.0 1.5
x/R

log10( 2)

5.00

3.95

2.80

1.65

0.50

Fig. 5. Cross-sectional cuts of density (top left), temperature (top right), current density squared (bottom left), and vorticity squared (bottom right)
at the end of the ideal MHD simulation, t = 820. Temperature is normalized with respect to the initial value at r = 0. Logarithmic scale is used for
each variable except for the density to optimize visualization. The cross-sectional cuts are done at the tube center, z = 0, except for current density
squared which is done at z = R. The complete temporal evolution is available as an online movie.

In Eq. (22), N is the number of samples, g(k) is the angular sam-
pling of the azimuthal (radial) velocity, and p is an integer that
plays the role of the azimuthal wavenumber and ranges between
0 and N − 1. In this notation, p = 0 is the torsional or sausage
mode, p = 1 is the kink mode, and p ≥ 2 are the fluting modes
(see, e.g., Roberts 2019). Generally, the Fourier amplitudes of
Eq. (22) are complex with the exception of G(p = 0). Conse-
quently, we calculated the modulus of all the Fourier coefficients.
The temporal evolution of the Fourier amplitudes is shown in
Figure 7. To optimize the visualization of the contribution of the
modes different from p = 0, which would be the dominant one,
we added the first twenty modes starting from p = 1.

As expected, the p = 0 mode is dominant during most of the
simulation because this is the azimuthal symmetry imposed by
the initial excitation. The sum of the first twenty Fourier modes
other than p = 0 is initially zero, as expected. The amplitude
of the p = 0 mode oscillates with a periodicity of 100 in code
units, which consistently matches the period of the local tor-
sional Alfvén mode at the chosen radial position. As the linear
development of phase mixing does not excite higher azimuthal
modes, the time at which |G(p > 0)| departs from zero can be

defined as the KHI onset time, τKH . In particular, we find that
τKH ≈ 70 in code units. We recall that the periods of the inter-
nal and external torsional modes are 535 and 100 in code units,
respectively, which indicate that the KHI is very quickly driven
in the system. The KHI onset happens significantly earlier than
the visually determined time of τvis ≈ 280 that is based on the
growth of the KHI vortices in density. In fact, the sum of the first
twenty Fourier modes is already comparable with the amplitude
of the torsional mode when the KHI eddies become visible in
density and in temperature.

A similar analysis but with the inclusion of higher azimuthal
modes does not change the obtained results (not shown here).
However, when the analysis is done in layers of the transition
region nearer the core, the period of the torsional mode increases,
which is expected, and the growth of the other Fourier modes is
delayed. The chosen radial position of r = 1.3R corresponds to
the location where the KHI first grow, so that the analysis at that
location provides the smallest KHI onset time.
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Fig. 6. Same as Fig. 5, but the cut is done longitudinally at y = 0. Note: the horizontal and vertical axes are not to scale. The complete temporal
evolution is available as an online movie.
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Fig. 7. Top panel: Temporal evolution of the Fourier coefficient with
p = 0 (red solid line) and of the sum of the modulus of the first twenty
positive Fourier coefficients (blue dashed line). For this analysis, the
azimuthal component of velocity along a circle of radius 1.3R at the z =
0 plane is used. The two vertical dashed black lines show, respectively,
the onset of the KHI obtained from this Fourier analysis, τKH ≈ 70, and
the time at which the KHI is first seen to grow in the density, τvis = 280.
Bottom panel: Same as the top panel but for the radial component of
velocity.

3.1.2. Evolution of integrated vorticity and current density

In the later stages of the simulation when turbulence plays a pre-
dominant role, we notice the very small scales that are gener-
ated in the current density and the vorticity. In addition, the val-
ues of the two quantities seem to increase with time during both
the initial quasi-linear stage governed by phase mixing and the
later nonlinear stage governed by turbulence. To quantify the in-
crease, we calculated the vorticity squared and the current den-
sity squared integrated in the whole computational domain as
functions of time, namely

Ω2(t) =
∫
|ω(r, t)|2 d3r, (23)

I2(t) =
∫
|j(r, t)|2 d3r. (24)

The calculations are shown in Fig. 8 after normalizing Ω2 with
respect to the initial value. The background model is current-
free, so that I2 = 0 at t = 0. Using the vorticity evolution in the
top panel of Fig. 8, we can distinguish three stages in our simu-
lation: a quasi-linear phase, a nonlinear phase dominated by the
KHI growth, and a saturation phase where turbulence develops.
The two vertical black dashed lines in Fig. 8 denote the transi-
tions between these distinct stages.

In the short-lived quasi-linear phase, there is an approxi-
mately linear increase of Ω2 with time owing to the slow build-
ing up of small scales by phase mixing (Soler & Terradas 2015;
Howson et al. 2020; Díaz-Suárez & Soler 2021b). This stage
ends when the KHI is triggered for t = τKH , which coincides
with a change of trend in the Ω2 curve. This coincidence re-
inforces the validity of the Fourier analysis to determine the
KHI onset time. During the second phase, the KHI development
more rapidly increases the values of vorticity (see Howson et al.
2017a; Guo et al. 2019; Díaz-Suárez & Soler 2021b, 2022). This
large increase in vorticity should continue indefinitely in our
ideal simulation as the large vortices break into smaller vortices
during the KHI turbulent evolution. Nevertheless, the increase
in Ω2 stops and saturates at t = τsat, with τsat ≈ 300 in code
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Fig. 8. Temporal evolution of the vorticity squared (top panel) and the
current density squared (bottom panel) integrated in the whole compu-
tational domain. The vorticity values are normalized with respect to the
initial value. The two dashed black lines show respectively the onset of
the Kelvin-Helmholtz instability inferred from the analysis of azimuthal
modes, τKH = 70, and the time at which the integrated vorticity squared
saturates, τsat = 300.

units for this particular simulation. The saturated phase is char-
acterized by the development of turbulence in the flux tube. The
limited spatial resolution and its associated numerical diffusion
is behind this saturation. Having a high spatial resolution is cru-
cial to capture the finest structures generated by the turbulence
(Howson et al. 2017b; Díaz-Suárez & Soler 2021b).

There is also an increase in the values of I2, but much
smoother than that observed for Ω2. The three separate phases
discussed before are not so clearly distinguishable in the evolu-
tion of I2. One may ask why both variables have different be-
haviors. To answer that question, one needs to consider the spa-
tial dependence of vorticity and current density along the flux
tube. For a standing torsional Alfvén wave, the velocity pertur-
bations have nodes at the tube footpoints and an antinode at the
tube apex. The vorticity follows the same dependence. There-
fore, in Eq. (23) the largest contribution to the integral of Ω2

comes from the apex of the tube. In turn, the magnetic field per-
turbations have antinodes at the tube footpoints and a node at the
tube apex, with the current density mimicking the same behav-
ior. Hence, in Eq. (24) the largest contribution to the integral of
I2 originate from the footpoints of the magnetic flux tube. Since
the KHI and turbulence develop predominantly around the tube
apex, they heavily impact on the evolution ofΩ2. Conversely, the
KHI and turbulence do not have such a pronounced development
at the tube footpoints, where phase-mixing remains as the dom-
inant mechanism that creates small scales over time. As a result,
there is a less significant imprint of the KHI and turbulence in the
evolution of I2, which keeps displaying the linear growth caused
by phase mixing even after Ω2 has already saturated.

3.2. Effect of Ohmic and ambipolar diffusion

The generation of small structures in the current density and the
increase of its value over time might lead to the dissipation of the
wave energy if magnetic diffusion is included. Here we focus on
studying the role of Ohmic and ambipolar diffusion. To this end,
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we ran two additional simulations. These new simulations were
performed under the same conditions as the ideal simulation but
adding the resistive term in the equations. In the first simulation,
called the Ohmic simulation, we included Ohmic diffusion, but
not ambipolar diffusion. Consequently, no approximation is used
in the treatment of resistivity and the PLUTO resistivity tensor
is in this case isotropic, namely

η̂ =

 ηO 0 0
0 ηO 0
0 0 ηO

 , (25)

In the second simulation, called the Cowling simulation, we in-
cluded both ambipolar diffusion and Ohmic diffusion, so the re-
sistivity tensor is anisotropic and follows Eq. (13). The purpose
in this Subsect. is to compare the two dissipative simulations
with the previously discussed ideal MHD simulation.

The overall, large-scale dynamics of both dissipative simula-
tions are identical to that of the ideal MHD simulation discussed
in Sect. 3.1. No noticeable differences are seen in the results of
density, temperature, and vorticity. We remind the reader that the
values of ηO and ηA used in the dissipative simulations are the
realistic ones in the partially ionized prominence plasma (see
Fig. 4). As a consequence of that, dissipation is not artificially
enhanced in our simulations and its influence is necessarily re-
duced to the smallest scales that develop during the evolution.
The current density is the variable that displays more significant
differences between simulations, but even for that variable, the
differences can be considered as small. Figure 9 shows a cross-
sectional at z = R of the current density squared in logarith-
mic scale for the ideal, Ohmic, and Cowling simulations. We
find slight differences in the fine scales of the turbulence that de-
velops at large times in the evolution, but no clear relation can
be deduced by comparing the results of the three simulations. It
is obvious that the presence of dissipation affects somehow the
development of the smallest scales. This fact, together with the
intrinsic chaotic nature of turbulence (see, e.g., Biskamp 2003)
causes the appearance of slightly different turbulent patterns for
the current density in the three simulations.

To quantify the differences in the current density between the
three simulations, Fig. 10 shows the temporal evolution of the
current density squared integrated in the whole computational
domain. The curve corresponding to the ideal simulation was al-
ready displayed in the bottom panel of Fig. 8. The three cases
behave similarly until turbulence begins to dominate the dynam-
ics late in the evolution. The three curves separate from that time
onwards, although an increasing trend remains in the three cases.
This increasing trend points out that the generation of small
scales in current density continues even when magnetic diffu-
sion works to dissipate those small scales. Counter-intuitively,
the ideal simulation shows lower values of current density than
the two dissipative simulations in some time range. In principle,
one should expect Ohmic and ambipolar diffusion to slow down
the KHI development and inhibit the formation of the smaller
KHI vortices compared to the ideal case. In this line of thought,
the increase in the current density in the dissipative simulations
should be less pronounced than in the ideal simulation. However,
the results do not point in that direction. Instead, we find no clear
pattern relating the efficiency of physical dissipation with the be-
havior of the integrated current density. The reason why physical
dissipation is acting inefficiently to damp the perturbations in the
current density resides in the realistically small values of the dif-
fusion coefficients and the likely influence of the unavoidable
numerical dissipation. Since we are not able to disentangle the
role of numerical dissipation from that of physical dissipation,

it is not possible for us to determine the relative importance of
numerical dissipation. However, the fact that the three simula-
tions show a different turbulent pattern at the very small scales
indicates that numerical dissipation does not entirely dominates
and that physical dissipation is playing a role.

We go on to examine the heating produced in the dissipative
simulations. Using the approximate resistivity tensor of Eq. (13),
the volumetric heating rate, Q, is:

Q = µ0 (η̂ · j) · j ≈ µ0

(
η|j∥|2 + ηC |j⊥|2

)
, (26)

where j∥ and j⊥ are the components of the current density in the
parallel and perpendicular directions to the background magnetic
field, calculated as:

j∥ =
j · B
|B|2

B ≈ jz, (27)

j⊥ =
B × (j × B)
|B|2

≈ jx x̂ + jyŷ. (28)

When ambipolar diffusion is absent, ηC = η, and the heating is
isotropic. In the presence of ambipolar diffusion, the heating is
expected to be more intense and dominated by the dissipation of
perpendicular currents. Figure 11 shows the volumetric heating
rate in the Ohmic and Cowling simulations at the same cross-
sectional cut as that in Fig. 10.

In the Ohmic simulation, we find that the heating is negligi-
ble in the initial stage of the dynamics governed by phase mixing
alone. Once the KHI evolves nonlinearly and turbulence devel-
ops, there is a large increase in the values of the heating rate. The
heating is essentially produced in the nonuniform transitional
layer between the core of the prominence thread and the corona,
where turbulence mainly develops. Negligible Ohmic heating is
obtained in the cool core of the thread, since turbulence does not
completely reach that region of the flux tube.

The heating obtained in the Cowling simulation is around
three orders of magnitude larger than the heating in the Ohmic
simulation. Such a result is consistent with the larger efficiency
of ambipolar diffusion in prominence threads (see, e.g„ Melis
et al. 2021, 2023). Again, the heating is most important in the
nonuniform transitional layer, but now a non-negligible heating
is obtained in the cool core of the thread. The fact that the cool
core is only partially ionized results in the presence of heating
although turbulence does not develop in that region. Thus, the
heating in the cool core is unrelated to turbulence and is directly
caused by the ambipolar dissipation of the Alfvén waves (Soler
et al. 2009).

The regions where heating is more intense appear to be very
spatially localized in the turbulent annulus, which might limit
the global effect that this heating could have on the prominence
thread. To explore whether the obtained local heating has a size-
able impact on the thermodynamic state of the thread, we se-
lected a subdomain of the model that encompasses the partially
ionized part of the thread. The considered subdomain corre-
sponds to x/R ∈ [−1.4, 1.4], y/R ∈ [−1.4, 1.4], and z/R ∈
[−4, 4]. We studied the evolution in time of the average tem-
perature in that region. The calculation is shown in Fig. 12. For
comparison purposes, we also included the result correspond-
ing to the ideal MHD simulation, for which there is no physical
heating. Despite the fact that heating is present in the Ohmic and
Cowling simulations, the average temperature in the three cases
shows a similar behavior. During the initial, quasi-linear phase
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Fig. 9. Cross-sectional cut at z = R of the current density squared in logarithmic scale at the end of the simulations, t = 820. The panels are sorted
as follows: ideal simulation (left), Ohmic simulation (center), and Cowling simulation (right). The complete temporal evolution is available as an
online movie.

Fig. 10. Same as bottom panel from Fig. 8 for the ideal simulation (solid
red line), but now including the results from the Ohmic simulation (blue
dashed line) and the Cowling simulation (black dash-dotted line).

the three curves superimpose. In that phase, we find that the aver-
age temperature remains roughly constant, with some slight in-
creases and decreases probably caused by the adiabatic compres-
sion and expansion of the plasma along the flux tube due to the
ponderomotive force. When the KHI and the turbulence occur,
the average temperature starts to decrease. The evolution of the
average temperature in the dissipative simulations is practically
the same as in the ideal simulation in this decreasing phase too.
The average temperature decreases in all cases due to the mix-
ing of the hot coronal plasma and the cold prominence plasma
owing to the nonlinear evolution of the KHI and the turbulence,
as Hillier & Arregui (2019) and Hillier et al. (2023) explained.
However, we note that unlike in Hillier et al. (2023), in our sim-
ulations we do not include radiative losses, which would further
cool the plasma until achieving a radiative equilibrium. The de-

crease of the average temperature that we find in our simulations
is exclusively due to the mixing of the internal and external plas-
mas. At the end of the simulations, the average temperature in
the considered subdomain has decreased about 2% with respect
to the initial value, so that this apparent cooling of the thread
due to the plasma mixing is indeed quite modest, but still much
more important that the Ohmic and ambipolar heating. We found
a similar evolution for the average temperature using larger sub-
domains in z- x- and y-directions, as long as the mixing layer is
included (not shown here).

We conclude that the plasma heating in the dissipative simu-
lations does not play a relevant role in the thermodynamic state
of the thread. The heating is very localized in a turbulent an-
nulus around the cool core of the thread and its contribution is
completely overwhelmed by the effective cooling caused by the
plasma mixing. The results here are in apparent contradiction to
those of Melis et al. (2021), who found that heating by Alfvén
waves in prominence threads could be important enough to bal-
ance energy losses due to radiative cooling. However, there are
important differences between the work of Melis et al. (2021)
and the present work, so that their results cannot directly be
compared with our findings. Melis et al. (2021) studied propa-
gating waves in a frequency range far higher than in our work
(they considered frequencies as high as 1 Hz), while here we ex-
cited standing waves that have much lower frequencies (between
1.22 mHz and 6.54 mHz). The efficiency of Alfvén wave dissipa-
tion increases with the frequency, so that the propagating waves
studied by Melis et al. (2021) are more efficiently damped than
the standing modes studied here. In addition, Melis et al. (2021)
used a 1D thread model and neither the KHI nor the turbulence
are able to develop in their configuration.

4. Forward modeling

Here we explore the possible observational signatures that the
nonlinear evolution of torsional Alfvén oscillations in promi-
nence threads may leave. To this end, and inspired by the work
of Martínez-Gómez et al. (2022) in the case of kink oscillations,
we computed synthetic Hα observations,

We used the method of fast synthesis of the Hα line profile
given in Heinzel et al. (2015). The details of the method can be
found in Heinzel et al. (2015) and we only give a summary of
its implementation. The formal solution to the radiative transfer
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Fig. 11. Snapshot of the volumetric heating rate, Q, in a cross sectional cut at z = R at the end of the simulation time, t̄ = 820. A logarithmic scale
has been used in both panels for an optimal visualization. Left panel: Ohmic simulation. Right panel: Cowling simulation. The complete temporal
evolution is available as an online movie.
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Fig. 12. Temporal evolution of the average temperature in a subdomain
where x/R ∈ [−1.4, 1.4], y/R ∈ [−1.4, 1.4], and z/R ∈ [−4, 4] for the
ideal simulation (solid red line), the Ohmic simulation (blue dashed
line) and the Cowling simulation (black dash-dotted line). The temper-
ature is normalized with respect to the initial average temperature.

equation in the line-of-sight (LOS) direction is:

Iν = S
[
1 − exp (−τν)

]
, (29)

where S is the source function assumed uniform and τν is the
optical thickness in the LOS, defined as:

τν =

∫
LOS
κ(ν, l)dl, (30)

where l is the LOS coordinate and κ(ν, l) is the absorption coef-
ficient given by

κ(ν, l) =
πe2

mec
f23n2(l) ϕ (ν, l) . (31)

In Eq. (31), f23 is the Hα line oscillator strength (see, Goldwire
1968, for the tabulated value), c is the speed of light, and me is

the electron mass. Moreover, n2 is the population of hydrogen
atoms in the second quantum level and ϕ (ν, l) is the normalized
absorption profile, which is approximated by a Gaussian profile
(see Heinzel et al. 2015). From here on, we assume that the LOS
direction is the y−direction, so the x− and z−directions form the
plane of sky (POS). Bearing in mind the local Doppler shifts
owing to the LOS velocity in the y−direction, we write,

ϕ (ν, y) =
1

√
π∆νD(y)

exp

−
[
ν − ν0

(
1 + vy(y)/c

)−1
]2

∆ν2D(y)

 , (32)

where ν0 is the Hα rest frequency, vy(y) is the y−component of
velocity, and ∆νD(y) is the thermal and microturbulent broaden-
ing given in Heinzel et al. (2015). The microturbulent broaden-
ing depends on the microturbulent velocity, whose value is set to
5 km s−1 as in Heinzel et al. (2015). In the simulations, we oc-
casionally found maximum LOS velocities of ± 10 km/s, which
is the limit of accuracy of the method of Heinzel et al. (2015).
However, the typical LOS velocities are normally around ± 6
km/s, which are compatible with observationally reported val-
ues (see, e.g., Schmieder et al. 2010; Gunár et al. 2012).

The hydrogen second-level population, n2, can be calculated
from the electron density. Following Heinzel et al. (2015), both
physical quantities are related as,

n2(y) =
n2

e(y)
f (T (y), p(y))

, (33)

where f (T (y), p(y)) is a function that depends on temperature
and gas pressure. Physically, the function f is associated with
the rate of the photoionization and the radiative recombination
from and to the hydrogen second-level population (Heinzel et al.
1994). We calculated the values of the function f using bilinear
interpolation from the values in Table 1 in Heinzel et al. (2015),
assuming a constant altitude of 10 Mm. We are aware that the
source function can vary with height (see, e.g., Heinzel et al.
1994). However, for consistency with our choice, we neglected
the variation of the source function with height.
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Fig. 13. Normalized specific intensity at the Hα rest frequency in four different times. The normalization is done with respect to the maximum
value at the beginning of the simulation. We note that the longitudinal, z, and transverse, x, directions to the thread are not to scale. A complete
temporal evolution is available as an online movie.

Since the ideal and dissipative simulations are nearly identi-
cal in the description of the overall dynamics of the thread, we
only use here the results from the ideal simulation to calculate
the synthetic observation. The specific intensity at the Hα rest
frequency in the POS is displayed in Fig. 13 and its accompany-
ing animation. As the fully ionized plasma does not emit in Hα,
we used a reduced numerical domain in z where z/R ∈ [−10, 10].
The emission occurs at the core of the partially ionized promi-
nence thread, which is the only part of the model that is visible
in the synthetic images. In the temporal evolution, first one can
see a periodic pulsation in the intensity that emerges from the
thread. This initial phase is then followed by the appearance of
fine strands that are longitudinal to the thread axis and have a
brighter intensity than the rest of the thread. The reason for the
existence of these two distinct phases in the synthetic observa-
tion is analyzed below.

The initial periodic variations in the Hα intensity are caused
by the integration of the LOS flows and, to a lesser extent, the
ponderomotive flows along the thread. To confirm this hypoth-
esis, first, we created a time-distance map of the Hα intensity
at z = 0, that is, across the thread. This is displayed in Fig. 14
(left panel). The initial intensity pulsations are clearly visible.
The period of such pulsations is ≈ 6.6 min and roughly two
periods are seen in the time-distance map. Then, we repeated
the time-distance map but neglecting the LOS flows. This is dis-
played in Fig. 14 (right panel). The comparison of the two maps
reveals that the LOS flows or, more precisely, the integration
of those flows along the LOS, have the net effect of producing
the intensity pulsations. In the initial stages of the evolution, the
LOS flows are caused by the phase mixing of the Alfvén modes.
Therefore, the intensity pulsations appear to be an observational
manifestation of phase mixing. To the best of our knowledge,
this has not been discussed before in the literature.
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Fig. 14. Time-distance map of the normalized specific intensity across the thread at the rest frequency of Hα (left). The normalization is done with
respect to the maximum value at the beginning of the simulation. Right panel is the same as the left, but neglecting the LOS velocities.

Simultaneously to the pulsations, one can see a gradual
brightening at the core of the prominence thread. This bright-
ening is present in both panels of Fig. 14, although it is visually
more evident in the right panel where the pulsations are absent.
This gradual brightening is caused by the ponderomotive force,
which tends to accumulate plasma around the thread center so
increasing its density. Using Eq. (14) from Díaz-Suárez & Soler
(2021b), we obtained the period of the associated slow MHD
wave due to the ponderomotive force to be ≈ 24.5 min. To com-
pute this period, we considered the longitudinally averaged den-
sity along the axis of the flux tube. The ponderomotive force acts
so slowly that the KHI develops before a complete period of the
slow MHD wave. In the time-distance map, the KHI and the on-
set of turbulence are seen in the form of an irregular pattern of
bright patches ultimately caused by the development of the KHI
vortices and the mixing of plasma. We note that the omission
of the LOS flows does not alter much the structure of the bright
patches, which confirms that their origin resides in the turbulent
distribution of the density.

By the time that the KHI develops after ∼ 12 min, Fig. 13
shows the formation of fine strands at the core of the prominence
thread. These strands are the observational signature of the KHI
vortices, which develop perpendicularly to the tube axis. This
is not a new result. The formation of strands owing to the KHI
has been found in numerical simulations of magnetic tubes os-
cillating in the kink mode (e.g., Antolin et al. 2014, 2015, 2016,
2017; Guo et al. 2019; Shi et al. 2021; Martínez-Gómez et al.
2022). Most of the previous works performed forward model-
ing of coronal loops, which involves spectral lines associated to
much hotter temperatures than those of prominence threads.

Martínez-Gómez et al. (2022) studied the Hα emission of
prominence threads oscillating in the kink mode and our re-
sults can be compared to theirs. Unlike in Martínez-Gómez et al.
(2022), we do not see a global lateral oscillation of the flux tube,
which is characteristic of kink modes. Another difference is that
the initial periodic pulsations inside the prominence thread due
to the phase-mixing flows along the LOS are not reported in
Martínez-Gómez et al. (2022). Regarding the formation of the

strands, Martínez-Gómez et al. (2022) found that the width of
the strands in their kink mode simulations is between 10 km
and 125 km. We found that the width of the strands in our tor-
sional mode simulations range between 115 km and 168 km,
approximately. Considering such size of the strands, they might
be observable with instruments such as CRisp Imaging Spec-
troPolarimeter (CRISP; Scharmer et al. 2008) at the Swedish 1
m Solar Telescope (SST; Scharmer et al. 2003), or the Visible
Image Spectrometer (VIS, Cao et al. 2010) at the Goode Solar
Telescope (GST, Goode et al. 2010). Both instruments has an
spatial resolution approximately equal to 0.1" (∼ 70 km).

However, we should note that the radius of our simulated
thread, 1 Mm, is larger than the typically reported thread radii,
∼ 200 − 300 km (see, e.g., Lin et al. 2005, 2007). An aver-
age value of observed thread radii is 228 km (see, e.g., Arregui
et al. 2018), which is a factor of 4.38 smaller than the radius of
the simulated thread. After scaling the width of the strands by
the same factor, we obtain that the strands should have an ac-
tual width between 26 km and 38 km, approximately. Such fine
strands cannot be seen with current instruments. Conversely, the
next generation of solar telescopes might be able to observe these
fine strands. The Visible Broadband Imager (VBI; Wöger et al.
2021) and the Visible Tunable Filter (VTF; Schmidt et al. 2014),
both installed at Daniel K. Inouye Solar Telescope (DKIST;
Rimmele et al. 2020), have spatial resolutions of 20 km and
∼ 25 km, respectively. The Tunable Imaging Spectropolarime-
ters (TIS) installed at the European Solar Telescope (EST; Quin-
tero Noda et al. 2022) have an spatial resolution of ∼ 29 km at
the rest wavelength of Hα in air. We repeated the synthetic mod-
eling considering different LOS directions, but all cases showed
similar results.

5. Concluding remarks

In this numerical work, we study the nonlinear evolution of
standing torsional Alfvén waves in a low-β prominence-thread
model embedded in a constant and axial magnetic field. The
model consists of a flux tube that has a core, a transversely
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nonuniform transition region, and a external medium. The exter-
nal medium has a uniform temperature and density while the lon-
gitudinally nonuniform core of the prominence thread is denser
and cooler than the external medium. Both regions are contin-
uously connected everywhere through a nonuniform transition.
Moreover, the magnetic field, where the prominence thread is
embedded, is line-tied at the photosphere. For simplicity, no
chromospheric layer is included.

We excited the longitudinally fundamental mode of standing
torsional Alfvén waves and performed three simulations using
the PLUTO code: an ideal MHD simulation and two nonideal
simulations including Ohmic diffusion alone and Ohmic together
with ambipolar diffusion. Other nonideal effects, such as the Hall
effect and the Biermann battery effect, were ignored as they are
of much less relevance in prominences (Khomenko et al. 2014b;
Ballester et al. 2018; Melis et al. 2021). The simulated dynam-
ics undergoes three differentiated stages. The first stage is quasi-
linear and dominated by the phase mixing of the Alfvén modes
(see, e.g., Heyvaerts & Priest 1983). The second stage begins
when phase-mixing azimuthal flows trigger the KHI. Since the
KHI excites higher azimuthal modes, the KHI onset time has
been obtained through an analysis of Fourier modes in the az-
imuthal direction using the azimuthal and radial components of
the velocity at a specific radial position. The onset time obtained
from the Fourier analysis agrees with the time at which a change
of trend in the integrated values of vorticity happens. Once the
KHI is triggered, large eddies initially appear, which evolve non-
linearly breaking into smaller and smaller eddies. This dynamics
eventually leads to turbulence, so the dynamics of the thread is
similar to that obtained in simulations of torsional oscillations
of coronal loops (see Díaz-Suárez & Soler 2021b). Nonetheless,
the limited spatial resolution of our ideal MHD simulation im-
posed a third phase, namely the saturated phase. In this stage,
the integrated vorticity remains roughly constant when it should
increase indefinitely. This situation, however, does not impede
that the generation of turbulence is captured by our simulations.

Overall, the large-scale dynamics in the two dissipative sim-
ulations is nearly identical to that of the ideal simulation. Some
differences appear only at the very small scales, specially in the
current density. This rather subtle effect of dissipation, indeed,
causes some impact in the evolution of turbulence, but we find
it difficult to disentangle the effect of the physical dissipation
from that of the inherent numerical dissipation. The plasma heat-
ing associated with the dissipation of currents is weak and very
localized in an annulus region at the thread boundary. As a re-
sult of that, no global heating of the prominence thread is pro-
duced. Instead, the mixing of the cool prominence plasma with
the hot coronal plasma leads to a moderate cooling of the thread
towards an intermediate temperature (see Hillier et al. 2023).
Thus, Ohmic and ambipolar dissipation of turbulence induced
by torsional waves does not appear to be a mechanism capable
of heating prominence threads.

We wondered what observational signatures the KHI and the
turbulence might leave. To this end, we followed the method of
Heinzel et al. (2015) to compute synthetic Hα observations. Be-
fore the onset of the KHI, we found a periodic brightening of
the Hα intensity at the core of the prominence thread. This peri-
odic brightening is caused by the integration of the flows along
the LOS and, to a lesser extent, the longitudinal flows driven
by the ponderomotive force. Later, we saw the formation of fine
bright strands parallel to the thread axis owing to the KHI vor-
tices and the turbulence. Forward modeling of coronal loop kink
oscillations (see, e.g., Antolin et al. 2014, 2016, 2017; Guo et al.
2019; Shi et al. 2021) and prominence thread kink oscillations

(Martínez-Gómez et al. 2022) reported similar strand formation.
We showed that standing torsional oscillations are also able to
drive such fine strand formation. When scaled according to the
considered radius of the thread in the simulations, the effective
width of the strands ranges between 26 km and 38 km, approx-
imately. The next generation of solar telescopes DKIST (Rim-
mele et al. 2020) and EST (Quintero Noda et al. 2022) might be
able to observe them. We note that while we modeled a promi-
nence thread as a straight magnetic tube, in reality the promi-
nence material is deposited in dips of the magnetic field due to
the effect of gravity. Thus, their inclusion in future works would
be more realistic. The study of the interaction between neighbor-
ing threads in a prominence would also be an interesting exten-
sion of this work.
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Appendix A: Justification for neglecting
off-diagonal terms in the resistivity tensor

As mentioned in Sect. 2.3, the resistivity tensor is defined in
PLUTO as a diagonal tensor (see Eq. (8)). However, the am-
bipolar diffusion introduces off-diagonal elements, as shown in
Eq. (11). Nonetheless, the properties of our problem allows us
to implement the ambipolar diffusion in an approximate man-
ner. Particularly, the background magnetic field, that is aligned
with the main axis of the flux tube along the z-direction, is much
stronger than the components across the background magnetic
field, namely Bx and By. This observation allows us to neglect the
off-diagonal elements associated with ambipolar diffusion. For
the ideal MHD simulation, we computed the maximum values
of Bx/Bz and By/Bz and plotted them against time. These results
are displayed in Fig. A.1. As one can see, the maximum values of
the magnetic field components perpendicular to the background
field are less than 5% the value of the background field strength.
In addition, we checked that these maximum values typically oc-
cur near the footpoints of the magnetic tube, where the plasma
is fully ionized and ambipolar diffusion is absent. Therefore, the
approximation explained in Sect. 2.3 to implement the ambipolar
diffusion in the particular case under study is justified.

Fig. A.1. Temporal evolution of the maximum value of Bx/Bz (top).
The same, but for By/Bz (bottom). The results are obtained from the
ideal MHD simulation.

Appendix B: Test implementation of Ohmic and
ambipolar diffusion in PLUTO

Appendix B.1: For 1.5 dimensions

Following Balsara (1996), Soler et al. (2009), or Ballester et al.
(2018), the dispersion relation for parallel propagating linear
Alfvén waves in the presence of the Cowling (Ohmic + ambipo-
lar) diffusion is:

ω2 + ik2ηCω − k2v2A = 0, (B.1)

Fig. B.1. Temporal evolution of the y component of velocity at the anti-
node. The blue dots corresponds to the results from the 1.5D simulation
while the black solid line corresponds to the fitting of the data by a
damped sine function, as indicated in the plot. Code units are used.

where ω is the frequency, k is the parallel wavenumber, and vA
is the Alfvén speed. The solution of Equation (B.1) is:

ω = ±kvA

√
1 −

k2η2
C

4v2A
− i

k2ηC

2
. (B.2)

The complex part of the frequency is related to the damping ow-
ing to Cowling’s diffusion.

In this test, we considered a 1D domain in the x−direction
with x ∈ [0, L] and with the same physical conditions as in the
core of the prominence thread. The length of the domain is set
to L = 10 km to consider a short wavelength and so to en-
hance the role of diffusion. The magnetic field is uniform and
aligned with the x−direction as well. The fundamental standing
Alfvén wave is excited by considering an initial condition for the
y-component of the velocity as

vy = v0 sin
(
πx
L

)
, (B.3)

with v0 = 0.01vA to be in the linear regime. Regarding the bound-
ary conditions, we set all the variables to satisfy outflow condi-
tions, that is, zero gradient, except for the three components of
velocity, which are fixed to zero. We used a numerical grid of
1000 points.

We studied the damping of the Alfvén wave by fitting the
maximum value of the y−component of velocity with an ex-
ponentially damped sine function. The result is shown in Fig.
B.1. We normalized all quantities using the dimensional val-
ues of L and vA. Then, in dimensionless values k = π and
ηC ≈ 1.96 × 10−3. Using Eq. (B.2), the theoretical frequency is
ω ≈ 0.314010− i 0.009672. In turn, the frequency obtained from
the simulations isω ≈ 0.313989−i 0.009699. Therefore, we find
that the simulations correctly recover the theoretical frequency.

Appendix B.2: For 2.5 dimensions

We solved the diffusion problem of the magnetic field in 2D un-
der the physical conditions of the core of the prominence thread.
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The velocity components are all set to zero, so the problem is
solved under static conditions. This test is inspired by that in-
cluded in the PLUTO documentation to verify the implementa-
tion of the resistivity module1.

We solved the problem in a uniform grid of 512x512 points
where x, y ∈ [−L, L], with L = 10 km. We considered a uniform
background magnetic field in the z-direction with strength B0.
Outflow boundary conditions are used.

Again, we normalized all quantities using the dimensional
values of L and vA. We considered the approximate form of the
resistivity tensor given in Eq. (13). The simulation is initiated at
t̄ = 1 with the following prescription for the components of the
magnetic field:

Bx(t̄ = 1) = ε exp
(
−
y2

4ηO

)
, (B.4)

By(t̄ = 1) = ε exp
(
−

x2

4ηO

)
, (B.5)

Bz(t̄ = 1) = B0 + ε exp
[
−

x2 + y2

4ηC

]
, (B.6)

with ε = 0.001B0, so that Bx, By ≪ Bz to be consistent with
our approximate implementation of the ambipolar diffusion. The
temporal evolution of the magnetic field for t̄ > 1 can analyti-
cally be obtained as

Bx(t̄) =
ε
√

t̄
exp

(
−
y2

4ηO t̄

)
, (B.7)

By(t̄) =
ε
√

t̄
exp

(
−

x2

4ηO t̄

)
, (B.8)

Bz(t̄) = B0 +
ε

t̄
exp

[
−

x2 + y2

4ηC t̄

]
, (B.9)

As a verification of the test, we plotted in Fig. B.2 the evolu-
tion of the z−component of the magnetic field at the center of the
numerical domain, x = y = 0, obtained from the numerical sim-
ulation. According to Equation (B.9), Bz should decrease as 1/t̄
in that point. The numerical results agree perfectly with the ex-
pected dependence. We have verified that the other components
of the magnetic field also follow the analytical result (not shown
here), meaning that the diffusion problem of the magnetic field
is correctly solved in 2D in a situation with Bx, By ≪ Bz.

Appendix B.3: For three dimensions

As in the Appendix B.2, we solved the diffusion problem of
the magnetic field under the physical conditions of the core
of the prominence thread, but now in a 3D domain. We used
128x128x128 points in a uniform grid where x, y, z ∈ [−L, L],
with L = 10 km as before. The situation is equivalent to that
solved in the Appendix B.2 but adding the third dimension.

1 http://plutocode.ph.unito.it/Doxygen/Test_Problems/
_m_h_d_2_resistive___m_h_d_2_field___diffusion_2init_
8c.html#details

Fig. B.2. Temporal evolution of the z−component of the magnetic field
at the center of the numerical domain. The blue dots corresponds to the
results from the 2.5D simulation while the red dashed line corresponds
to the fitting of the data by the function: f (t) = 1.0 + 1.0/t. Code units
are used.

The simulation is initiated at t̄ = 1 with the following pre-
scription for the components of the magnetic field:

Bx(t̄ = 1) = ε exp
(
−
y2

4ηO

)
exp

(
−

z2

4ηC

)
, (B.10)

By(t̄ = 1) = ε exp
(
−

x2

4ηO

)
exp

(
−

z2

4ηC

)
, (B.11)

Bz(t̄ = 1) = B0 + ε exp
[
−

x2 + y2

4ηC

]
, (B.12)

with ε = 0.001B0 as before. The analytic temporal evolution of
the magnetic field for t̄ > 1 is:

Bx(t̄) =
ε

t̄
exp

(
−
y2

4ηO t̄

)
exp

(
−

z2

4ηC ¯̄t

)
, (B.13)

By(t̄) =
ε

t̄
exp

(
−

x2

4ηO t̄

)
exp

(
−

z2

4ηC t̄

)
, (B.14)

Bz(t̄) = B0 +
ε

t̄
exp

[
−

x2 + y2

4ηC t̄

]
, (B.15)

As a verification of the 3D test, we plot in Fig. B.3 the evo-
lution of the y−component of the magnetic field at the center
of the numerical domain, x = y = z = 0. According to Equa-
tion (B.6), By should decrease as 1/t̄ in that point. As expected,
the numerical data follows the theoretical dependence. The other
components of the magnetic field are also correctly evolved (not
shown here). Therefore, the diffusion problem of the magnetic
field is correctly solved in 3D.
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Fig. B.3. Temporal evolution of the y−component of the magnetic field
at the center of the numerical domain. The blue dots corresponds to the
results from the 3D simulation while the red dashed line corresponds to
the fitting of the data by the function: g(t) = 1.0/t. Code units are used.
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